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INTRODUCTION

• What is a Point cloud?

- Geometry  -> 3D coordinates

- Attributes  -> color information or normal vectors

• Applications: Cultural heritage, Autonomous driving, Robotics etc.

• Need of Point Cloud Compression.

• MPEG PCC standardization:



• Machine learning for media applications.

• Traditional Vs Machine learning based techniques.

OVERVIEW
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POINT CLOUD GEOMETRY AUTOENCODER

• CNNs: Most effective in extracting features.

• Characteristics found in images and videos.

• PCG-AE: Basic implementation.

• Occupancy signaled by ‘1’ and ‘0’.

• Adaptive forward and Inverse Transform.

• Four models, for N = 32, 64, 96 and 128.

• MPEG dataset, PCL as benchmark, RD performance.
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RD CONTROL THROUGH IMPLICIT AND 

EXPLICIT QUANTIZATION

• Implicit (                                ) Vs Explicit (QS).

• Solves the multiple models training problem.

• Cover wide range of bitrates.

• Reduces training complexity and memory requirements.
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LEARNED CONVOLUTIONAL TRANSFORMS

• Directly operates on voxels and decoding-> Classification problem.

• Analysis and synthesis transform.

• Number of filters, filter size and strides.

• Convolution and transpose convolution.

• Trained on ModelNet40, Tested on MVUB, MPEG anchor (51.5%).
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LEARNED PC GEOMETRY COMPRESSION

• Preprocessing: Voxelization is an optional step, Scaling (× 𝑠) to reduce sparsity, Partition 

into non-overlapping blocks and metadata.

• VAE based encoder with Voxeption Resnet (VRN).

• Extraction: Volumetric to raw format.

• End-to-End training by changing λ.

• Training: ShapeNet, Testing: MPEG and JPEG Pleno.

• Outperforms GPCC and PCL (>50%).
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DEEP AE-BASED POINT CLOUD GEOMETRY 

COMPRESSION

• Advantages of CNNs: Retain spatial relations and weight sharing.

• FCNN: It works directly on the geometry coordinate.

• Filters in each layer: 64, 128, 128, 256 and k (no. of input points).

• ShapeNet with 90%, 10% split from a single class.

• MPEG-GPCC: 73.17% average gain.
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FOLDING NET: DEEP GRID FORMATION 

• Voxelization is performed to make CNN more meaningful.

• However, it sacrifices the original representation.

• Folding operation: 2D to 3D mapping.

• Starts with random folding.

• ShapeNet dataset and uses only 7% parameters of a FC decoder.
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RECURRENT NEURAL NETWORK (RNN)

• Limited research on usage of RNN for PCC.

• Focused on data from 3D LiDAR sensors (Driving data from 11 areas of Japan)

• Challenging data to compress and hence works on raw packets.

• Raw packets to 2D matrices losslessly.

• Uses residual blocks for accurate decompression.
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CONCLUSION

CNN

FCNN

RNN

• An emerging research area of PCC using ML/DL.

• Most existing work focuses on geometry compression. 

• Most common choice is CNN-based AE with few FCNN and even fewer RNN.
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Thank You!
Questions?
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