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Abstract—An adaptive technique to switch between RAHT and
Dyadic RAHT using 3D Sobel filter has been found to improve the
compression in 3D point clouds by offering substantial cumulative
compression gains. However, the drawback of this switching
scheme is its need for tuned thresholds. To this end, we propose to
use neural networks to resolve the threshold dependency issue so
that the switching becomes truly adaptive. Two publicly available
point cloud datasets were used to test the effectiveness of the
proposed method. We achieved significant gains on MVUB and
minor gains on 8iVFB dataset over all Dyadic approach.

Index Terms—Attribute compression, Neural networks, Point
clouds, RAHT, Dyadic RAHT.

I. INTRODUCTION

A Fter 3D meshes, point cloud (PCs) are the most advanced
media format used in data representation. They comprise

of scattered points in space where each point is represented
using a spatial coordinate (x, y, z) called Geometry with color
and/or reflectance information related to it called Attributes
[1]. Although a mesh provides far more complex geometry
and sub-metric inspection of an object, point clouds are more
widely used due to some limiting factors of meshes, mainly
linked to complexity. Moreover, dense PCs are used in the
development of 3D meshes to generate their finely detailed
faces, edges and vertices. Therefore, PCs can also be perceived
as building blocks of a mesh. Due to the popularity of PCs in
recent years, they are employed in various applications such as
immersive media, medical tomography, autonomous driving,
augmented reality (AR), robotics, etc.

With increasing usage of inexpensive 3D scanners and
modern multibeam echosounders, there has been a rise in gen-
eration of very high volume of dense point cloud datasets [2].
Because of the unstructured nature of these PCs, unlike tra-
ditional 2D images/videos, PC compression can be extremely
challenging [3]. Therefore, in many practical applications such
as smooth streaming with limited bandwidth, efficient PC
coding solutions become essential [4].

Paramount efforts have been made by researchers to im-
prove the compression efficiency of point clouds. Moving
Picture Expert Group (MPEG) has been conducting meetings
towards standardization of compression technologies for point
cloud compression (PCC), which is now widely used as a
benchmark in academic and non-academic research [5]. The

two distinct technologies are Geometry-based PCC (G-PCC)
and Video-based PCC (V-PCC). From the details of the codec
architecture mentioned in [1], it can be concluded that these
technologies mainly comprises of 3D to 2D projection and
rule-based traditional approaches [6].

In addition to the conventional coding solutions imple-
mented on PCs, deep learning (DL) has also made its way
in advance media compression with impressive preliminary
results [7]. Most of the DL coding solutions are 3D CNN-
based autoencoders (AE) [8], [9] with few fully-connected
neural network (FCNN) approaches [10], [11] and even
fewer recurrent neural network (RNN) [12] based techniques.
Among the limited neural network based solutions, only a
handful of them are end-to-end.

In [13], one of the first few end-to-end framework for
lossy attribute coding using AE is introduced. There are also
few partitioning-based methods such as [14] which segments
the PC into fine-grained patches, whereas [15] uses kd-tree
based decomposition to efficiently divide the color distribution.
The coding gains of the above mentioned approaches are
reported to be comparable and in some cases outperforms the
MPEG-anchor. However, these approaches need to train large
models to generate rate-distortion curves and they are also data
dependent [16].

In G-PCC, attributes are encoded using Region Adaptive
Hierarchical Transform (RAHT), separately from geometry
[17]. Due to the effectiveness of Dyadic decomposition [18],
Blackberry proposed to replace RAHT with Dyadic RAHT
which was later adopted in the codec [19]. Then, it was
observed in [20] that switching between the two types of
decomposition was found to be more effective instead of
using only one type of transform throughout the PC. But
the approach was threshold dependent, thereby hindering its
practical usability.

In this paper, we address the threshold tuning problem of
the technique in [20] by training neural networks to learn the
switch between RAHT and Dyadic RAHT. Experimental re-
sults show considerable compression gains while successfully
eliminating the threshold dependency.

The remainder of the paper is organized as follows: Section
II provides the problem statement with details related to
data preprocessing. Section III describes the shallow neural
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Fig. 1. Two types of decomposition (RAHT Vs Dyadic RAHT).

network (SNN) coding solution. Section IV discusses the
BD-rate performance of the proposed technique. Section V
concludes the paper.

II. PROBLEM STATEMENT

One of the options to encode the attribute values of a PC is
RAHT, which is an adaptive variation of a Haar wavelet trans-
form introduced in [5]. It is based on the hierarchical structure
of the occupancy map called Octree. In G-PCC codec, the
transform is applied in three steps as shown in Fig. 1. Let us
consider the 8 blocks at the top. They represent the attribute
values that are first decomposed in the z−direction to generate
the low-pass (L) and high-pass (H) components performing
four transformations in step 1 (High-pass components are
shown in dashed lines). In the second step, only low-pass co-
efficients from the first step are decomposed to output LL and
LH performing two transformations in y− direction. Finally,
LL is transformed to generate LLL and LLH performing only
one transformation in x−direction. In Dyadic decomposition
shown on the right, high-pass components at each stage are
also decomposed performing four transformations in each step.

Fig. 2. 3D edge detection scheme (The original switching which depends on
the k value).

RAHT was later replaced by Dyadic decomposition. Chang-
ing the fundamental structure from RAHT to Dyadic decom-

position showed ∼ 2.3% average gain on the entire MPEG
dataset and hence was adopted in the G-PCC codec.

Fig. 3. 18−neighbourhood.

It was recently found that switching between these two
transforms based on the characteristics of the neighboring
blocks offered improvements in rate-distortion sense. From the
experimental analysis in [20], it was concluded that RAHT is
beneficial for flat regions and Dyadic RAHT provides better
gains when applied on discontinuous regions. The idea was to
study the nature of 18 neighboring blocks (shown in Fig. 3)
using a 3D Sobel filter kernels (Sx, Sy and Sz) to output the
strength of the edge (▽f) defined as follows:

▽f(x, y, z) = G(x, y, z) = [GxGyGz]
T (1)

Where Gx, Gy and Gz are gradients in x, y and z direc-
tion respectively. The magnitude was approximated using the
absolute values for faster computation as defined below:

|(▽f)| ≈ |Gx|+ |Gy|+ |Gz| (2)

The magnitude of the edge (|▽f |) was normalized using
the average (avg) of its neighbouring blocks to compute
normalized magnitude of the edge called k as shown in Fig. 2.
Thresholding on k was performed to interpret the continuity
in the central block. A uniform block is indicated if k exceeds



a certain tuned threshold and hence RAHT decomposition is
used, otherwise Dyadic is used.

This process can be perceived as the luma values (repre-
sented as Li where 1 ≤ i ≤ 19) of 18 neighbors and central
block multiplied with constant weights (α′s) as shown in Fig.
2, where α′s represents the fixed weights of the Sobel filter.
Normalized value k was used to make a binary decision based
on a threshold. The disadvantage of the proposed method is its
threshold dependency on k, which was selected by trial and
error for each point cloud. Therefore, threshold dependency
hinders the general applicability of this switching scheme.

Fig. 5. T-SNE visualization for Pleno data.

Neural network (NN) based compression methods for PC
have emerged recently with comparable compression gains,
albeit with the necessity to store multiple trained models to
generate different rate-distortion trade-offs [21]. In this paper,
we address the threshold tuning problem by replacing the
original 3D edge filter scheme with a shallow neural network.
The problem now becomes a pattern classification task with
two output classes (RAHT and Dyadic RAHT).

Data Preprocessing: Only Luma values of 18 neighboring
blocks with the central block was used in the original scheme
and tested for threshold values of T = 0.2, 0.4, 0.6 and 0.8. The
threshold with maximum cumulative gain was selected. The

19 features with the transform chosen (0 for RAHT and 1 for
Dyadic) based on the manual tuning was written in a data file
to prepare the training dataset. Data cleaning is performed by
first separating the 0 (RAHT) samples with 1 (Dyadic RAHT)
samples to study their distribution. Duplicate data samples
were dropped from both the classes and concatenated together
followed by random shuffling.

Data Visualization: We use t-SNE to visualize data in two
dimensions. A random sample of 15000 data points is used
to create the embedding which are then projected onto a two
dimensional plane to make it easier for visualization [22]. Here
we observe more of Dyadic points compared to RAHT making
the data biased as shown in Fig 5. Since performing Dyadic
transform a majority of the time and using RAHT only for
very weak edges was found to be beneficial in [20], it was
expected for the data samples to be more biased towards the
Dyadic class.

III. NEURAL NETWORK STRUCTURE

The PC geometry is encoded using the octree approach,
where the PC is enclosed in a 3D volume of D×D×D voxels.
The 3D volume is divided into 8 sub-cubes of size D/2 ×
D/2 × D/2. Only occupied voxels are divided further and
represented by ’1’, and ’0’ otherwise. This process is repeated
until the dimension reduces to 1× 1× 1. Since the occupancy
information is required for the attribute compression method
chosen by the user, the geometry is encoded first.

For attribute compression using either RAHT or Dyadic
RAHT, the octree representation is also considered. Let us
consider a certain region in a 3D PC. The block to be trans-
formed is highlighted in orange as shown in Fig. 4 referred as
central block. Now, similar to the prediction scheme [23], the
original scheme of 3D edge detection also uses 18 neighbors
around the central block. 19 Luma values (18 neighbors plus
the central block) were used in detecting the edges in the
central block to decide the type of decomposition to be used.
These 19 values form features for the target class based on
the original scheme used in [20].

Although most deep learning based coding solutions for
PC compression uses CNN-based architecture to retain 3D
correlations and maintain lower complexity via weight sharing.

Fig. 4. Fully connected neural network (FCNN) architecture.



They need to store multiple models to obtain different RD
curves with extensive running time required in training large
networks [11]. In our problem, we encounter a very localized
region in the PC where at a time, a maximum of 19 Luma
values are processed. Therefore, we have opted for a fully
connected structure as shown in Fig. 4. Instead of using a set
of 3D blocks, directly fed to the neural network, we flatten the
18 neighbors and the central block and use 19-tuple feature
vectors. The architecture has an input layer of 19 neurons with
an output layer of 1 neuron for the target label (’0’ is used for
RAHT and ’1’ is used for Dyadic RAHT), which is essentially
a binary classification problem. We have used 2 small hidden
layers of 12 and 5 neurons respectively, making it a total of
4-layer architecture including the input and output layers. All
the layers are fully connected. A sigmoid function was used
for the final layer, whereas the ReLU activation function was
used for the remaining three layers. The FCNN architecture as
shown in Fig. 4 is used for training with the data split of 70%,
15%, 15% to divide it into training, validation, and testing
set respectively. The model was trained for 1000 iterations
with the binary cross entropy (BCE) loss function. Adam
optimizer with a learning rate of 0.01 and weight decay of
1× 10−6 was used for fast convergence. Regularization with
β1 = 0.9 and β2 = 0.999 and dropout with probability of
0.1 in the third layer was used to avoid over-fitting and to
improve generalization on the biased data. Finally, the trained
model was imported into the MPEG-GPCC codec replacing
the original 3D edge detection scheme which was threshold
dependent.

IV. RESULTS

This section presents the performance assessment of the pro-
posed method to eliminate the threshold dependency. Learning
based coding solutions are generally most effective for dataset
that share some similarity that uses the adaptation from the
training data onto the testing data. In this context, we used
Microsoft Voxelized Upper Bodies (MVUB) dataset [24] from
the open source JPEG Pleno database, which is a dyanmic
point cloud dataset publicly available. Each sequence consists
of multiple frames that share correlations between the frames
within a sequence. We trained the neural network shown in
Fig. 4 with specifications provided at the end of the previous
section.

Fig. 6. MVUB dataset (from left to right): Andrew, Phil, Ricardo, Sarah and
David.

The model was trained using only the first frame of each
of the five sequences and tested on ten random frames. Fig.
6 shows the first frames of Phil, Ricardo, Sarah and Andrew
sequence. Accuracy of 92.78%, 92.54%, 92.38% was achieved
on the training, validation and testing data respectively. The

TABLE I
BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON

MICROSOFT VOXELIZED UPPER BODY (MVUB) DATASET.

Test No. of BD-rate Cumulative

Sequences Points Luma Cb Cr Gain

Andrew 277038 -0.9% -8.4% -3.6% -12.9%
Phil 336323 0.2% -5.4% -2.1% -7.3%

Ricardo 952178 -1.2% -3.8% -3.8% -8.8%
Sarah 304528 -0.9% -4.9% -4.4% -10.2%
David 302584 -2.9% -3.7% -2.9% -9.5%

loss curve is shown in Fig. 8 and accuracy curve is shown in
Fig. 7 for training and validation set.

Fig. 7. Training vs validation accuracy.

Fig. 8. Training vs validation loss.

The Dyadic RAHT approach was used as the benchmark
to assess the performance of the proposed technique and
RD curves were used as the performance metrics to observe
the gain across the three channels (Luma, Cb, Cr). Table
I shows the gains over each channels for a random frame
that achieved the highest gain. The confusion matrix of the



TABLE II
CUMULATIVE BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON 10 RANDOM FRAMES ON MVUB DATASET.

Test Cumulative Gain Average

Sequences 1 2 3 4 5 6 7 8 9 10 Gain

Andrew -12.9% -12.7% -10.0% -9.5% -8.3% -8.0% -6.6% -6.3% -5.7% -5.3% -8.53%
Phil -7.3% -5.9% -5.6% -3.6% -3.4% -3.0% -2.7% -2.3% -2.0% -1.7% -3.75%

Ricardo -8.8% -8.4% -6.8% -5.2% -4.2% -4.1% -3.9% -3.5% -3.0% -2.7% -5.06%
Sarah -10.2% -8.5% -8.2% -6.6% -5.6% -4.9% -4.4% -4.2% -2.4% -2.2% -5.72%
David -9.5% -8.2% -7.6% -7.3% -5.7% -5.4% -5.2% -4.6% -2.7% -2.5% -5.87%

classification results are shown in Fig. 10. The instances
or counts in the confusion matrix can also be expressed in
terms of percentages. The proposed scheme achieved 92.37%
of accuracy with high sensitivity, specificity and precision
of 95.88%, 88.88% and 89.69% respectively, showing the
accuracies obtained are not skewed by uneven test data.

Fig. 9. 8iVFB dataset (from left to right): Soldier, Loot, Long Dress and Red
& Black.

TABLE III
BD-RATE GAINS FOR PROPOSED SCHEME OVER DYADIC RAHT ON 8I

VOXELIZED FULL BODIES (8IVFB) DATASET .

Test Cumulative Gain Average

Sequences 1 2 3 4 Gain

Soldier -4.8% -4.0% -3.8% -3.4% -4.0%
Loot -8.5% -6.9% -5.5% -3.9% -6.2%

Long dress -1.3% -1.0% -0.6% -0.4% -0.825%
Red and Black -3.0% -1.9% -1.6% -1.5% -2.0%

To summarize the RD performance of the proposed scheme,
we use the cumulative gain, which is calculated by simply
adding the gain or loss across the three channels. The cu-
mulative gain on 10 random frames from the five dynamic
sequences is tabulated in Table II arranged in decreasing
order. The proposed scheme provided an average cumulative
gain of 8.53%, 3.75%, 5.06%, 5.72% and 5.87% for Andrew,
Phil, Ricardo, Sarah and David sequence respectively over
the Dyadic RAHT approach. In order to verify the robustness

of the proposed scheme, we also tested it on the 8iVFB (8i
Voxelized Full Bodies) JPEG Pleno dataset shown in Fig. 9.
Our method not only provided an average cumulative gain of
4.0%, 6.2%, 0.825% and 2.0% for Soldier, Loot, Long Dress
and Red & Black sequence, respectively (as summarized in
Table III), but also eliminates the need to tune the threshold
as in the original switching scheme.

Fig. 10. Confusion matrix of classification results.

V. CONCLUSION

In this paper, we present a new neural network based
coding approach that focuses on compression of static point
cloud attributes. More precisely, we address the threshold
dependency problem to enable the generalized applicability of
the transform switching technique based on the characteristics
of different regions in a point cloud. The proposed neural
network technique comprises of three main steps: collecting
data from the 3D edge detection scheme, using the data
to train a fairly simple shallow neural network and finally
deploying the trained network to replace the original switching
scheme. We have demonstrated the efficiency of proposed
method for point cloud attribute compression in terms of RD-
performance, by comparing it to MPEG-GPCC standardized
method that uses only Dyadic transform throughout the point
cloud. Average cumulative gains of over 3% was achieved
on MVUB dataset, with only minor gains attained on 8iVFB
dataset. In this research work, we have only used the Luma
values for classification. In the future work, feature size could
be increased to obtain higher training, validation and testing
accuracy. We will study the effect of these changes on the
attribute compression of point clouds.
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Alternative for the Region-Adaptive Hierarchical Transform,” IEEE
Signal Processing Letters, vol. 26, no. 9, pp. 1369–1372, 2019.

[18] E. Peixoto, “Intra-Frame Compression of Point Cloud Geometry Using
Dyadic Decomposition,” IEEE Signal Processing Letters, vol. 27, pp.
246–250, 2020.

[19] J. Taquet and S. Lasserre, “G-PCC On dyadic RAHT,” ISO/IEC
JTC1/SC29/WG11 MPEG/m53557, 2020.

[20] R. Hooda and W. D. Pan, “Early termination of dyadic region-adaptive
hierarchical transform for efficient attribute compression of 3d point
clouds,” IEEE Signal Processing Letters, vol. 29, pp. 214–218, 2022.

[21] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, “Deep learning-
based point cloud geometry coding: Rd control through implicit and
explicit quantization,” in 2020 IEEE International Conference on Mul-
timedia Expo Workshops (ICMEW), 2020, pp. 1–6.

[22] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[23] D. Flynn and S. Lasserre, “G-PCC CE13.18 report on upsampled
transform domain prediction in RAHT,” ISO/IEC JCTC1/SC29/WG11
MPEG/m49380, July 2019.

[24] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, “Microsoft Voxelized
Upper Bodies – A Voxelized Point Cloud Dataset,” ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) input document m38673/M72012,
May 2016. [Online]. Available: http://plenodb.jpeg.org/pc/microsoft/

http://arxiv.org/abs/1903.08548
http://arxiv.org/abs/1903.08548
https://arxiv.org/abs/1909.12037
http://arxiv.org/abs/1905.03691
http://arxiv.org/abs/1712.07262
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://plenodb.jpeg.org/pc/microsoft/

	Introduction
	Problem Statement
	Neural Network Structure
	Results
	Conclusion
	References

